The Crystal Structure of $\mathrm{KBrF}_{4}{ }^{*}$

By Stanley Siegel
Department of Chemistry, Argonne National Laboratory, Lemont, Illinois, U.S.A.

(Received 27 October 1955 and in revised form 27 December 1955)

Abstract

KBrF_{4} is tetragonal, with $a=6 \cdot 162 \pm 0.002, c=11.081 \pm 0.002 \mathrm{kX}$. The observed density leads to 4 molecules in the cell, with a calculated density $\varrho=3.06 \mathrm{~g} . \mathrm{cm} .^{-3}$. The space group is $D_{4 h}^{18}-I 4 / \mathrm{mcm}$. The fluorine atoms are distributed in tetrahedral configurations about each bromine atom, with $\mathrm{Br}-\mathrm{F}=1.81 \AA$. The $\mathrm{F}-\mathrm{F}$ distances within the BrF_{4} group are 2.81 and $3.03 \AA$. Each potassium is bonded to 8 fluorines, with $\mathrm{K}-8 \mathrm{~F}=2.84 \AA$.

Introduction

Samples of KBrF_{4} were prepared by the reaction of KF with BrF_{3}. A form suitable for powder photographs was obtained by removing the excess BrF_{3} under vacuum at $130^{\circ} \mathrm{C}$., leaving the residue as a granular material which was ground and mounted in Kel-F or quartz capillary tubes. Since KBrF_{4} will react with traces of moisture, the capillary tubes were filled under dry conditions.

The reaction of KBrF_{4} with moisture results in the formation of decomposition products of unknown composition. Even under favorable conditions of preparation, weak lines of the decomposed material always appeared on the powder photographs. Despite the presence of these spurious maxima, a tetragonal cell was chosen with

$$
a=6.162 \pm 0.002, \quad c=11.081 \pm 0.002 \mathrm{kX}
$$

and this was subsequently verified by single-crystal observations. (Cell dimensions are based on $\mathrm{Cu} K \alpha_{1} \alpha_{2}$ $=1.5387 \mathrm{kX}$.)
Single crystals were prepared and mounted in Kel-F capillary tubes. The decomposition products produced a sufficient number of interfering powder lines which made the single-crystal patterns useless for intensity purposes. It was not possible to obtain more than one 180° oscillation photograph about the c axis and one zero-level Weissenberg pattern before decomposition became complete. Consequently, it was necessary to use powder patterns in the structure determination.

Determination of the structure

In order to improve resolution, a narrow quartz capillary, less than 0.01 cm . in diameter, was used for the final powder pattern. This was required in order to separate impurity maxima from the KBrF_{4} pattern and also to resolve a number of interfering KBrF_{4} lines.

For the powder pattern, the following reflections

[^0]were observed: $h k l$ with $h+k+l=2 n, 0 k l$ with $k, l,=$ $2 n$, or possibly, $k+l=2 n$, $h k 0$ with $h+k=2 n$, $h h l$ with $l=2 n, h 00$ with $h=2 n$, $00 l$ with $l=2 n$.

A number of reflections $h k l$ with l odd were observed on the powder pattern. On the other hand, only a few such reflections were observed on the oscillation pattern, in particular, 211, 213, and 215. However, these maxima fall on, or are nearly coincident with, impurity powder lines. For the zero-level Weissenberg pattern, reflections $h k 0$ occurred with $h+k=2 n$.
The lack of definite information on the 0 kl reflections, and the presence of only a limited number of reflections with l odd made the space-group assignment uncertain. Consequently the structure was determined by trial from intensity considerations.

Flotation experiments indicated a density value between $2 \cdot 8$ and $3 \cdot 1$ g.cm. ${ }^{-3}$. This led to 4 molecules in the unit cell and a calculated X-ray density of $3.06 \mathrm{~g} . \mathrm{cm} .^{-3}$. Thus, $4 \mathrm{~K}, 4 \mathrm{Br}$, and 16 F atoms must be placed in the cell.
Although the 16 F atoms can produce a sizeable effect on the line intensities, one may expect the major scattering to arise from the 4 K and 4 Br atoms. Examination of the intensities of Table 1 indicates that the probable positions for these atoms are:

$$
\begin{aligned}
& 4 \mathrm{Br} \text { in } 0,0,0 ; 0,0, \frac{1}{2} ; \frac{1}{2}, \frac{1}{2}, 0 ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2} . \\
& 4 \mathrm{~K} \text { in } \frac{1}{2}, 0, \frac{1}{4} ; \frac{1}{2}, 0, \frac{3}{4} ; 0, \frac{1}{2}, \frac{1}{4} ; 0, \frac{1}{2}, \frac{3}{4} .
\end{aligned}
$$

In locating the \mathbf{F} positions, it was assumed that the fluorine atoms would be distributed in some characteristic configuration about each bromine and that the $\mathrm{Br}-\mathrm{F}$ bond lengths would approximate the value of $1.78 \AA$ found in BrF_{3} (Rogers, Wahrhaftig \& Schomaker, 1947).

A study of the $h h 0$ reflections led readily to possible x and y coordinates for the fluorine atoms. For the 220 reflection, the potassium and bromine atoms account practically for the observed intensity. However, for the 110 and 330 reflections, the contributions of these atoms are too small to explain the observed intensities, indicating that there must be a large fluorine contribution. For the 330 reflection, the fluorine scattering must be near its maximum value. This requires

Table 1. Crystallographic data

hkl	$\left(\sin ^{2} \theta\right)_{o}$	$\left(\sin ^{2} \theta\right)_{c}$	$I_{o}^{\frac{1}{2}}$	$I_{c}^{\frac{1}{4}}$
002	0.01938	$0 \cdot 01938$	65	94
110	0.03110	0.03121	97	111
112	0.05053	$0 \cdot 05056$	203	219
200	0.06243	$0 \cdot 06241$	93	91
004	0.07735	0.07735	32	34
$202)^{*}$	0.08284	0.08273	35	35)
$211{ }^{*}$	0.08284	0.08283	70	58 \}
114	0-1082	$0 \cdot 1085$	22	22
213*	$0 \cdot 1214$	$0 \cdot 1214$	51	61
220*	$0 \cdot 1248$	0.1248	73	77
204	$0 \cdot 1393$	$0 \cdot 1396$	110	110
222	$0 \cdot 1436$	$0 \cdot 1441$	34	33
310	-	$0 \cdot 1559$	0	4
006)	$0 \cdot 1735$	$0 \cdot 1735$	~ 0	3)
312)	$0 \cdot 1752$	$0 \cdot 1752$	90	91)
215*	$0 \cdot 1981$	$0 \cdot 1986$	<33	3
224)	0.2019	0.2019	58	58)
116	$0 \cdot 2047$	$0 \cdot 2047$	57	54)
321	-	$0 \cdot 2075$	0	3
314)*	0.2333	$0 \cdot 2331$	39	27)
206 \}	$0 \cdot 2359$	$0 \cdot 2360$	26	35)
323	-	$0 \cdot 2461$	0	4
400	0.2494	0.2494	23	23
402)	0.2689	$0 \cdot 2687$	24	12
411 \}	0.2689	0.2699	24	9)
330	$0 \cdot 2807$	$0 \cdot 2806$	27	27
332)	$0 \cdot 3007$	$0 \cdot 2999$	43	45
226	$0 \cdot 3007$	$0 \cdot 3004$	19	35
413	$0 \cdot 3078$	$0 \cdot 3085$	23	20
008	~ 0.3093	$0 \cdot 3085$	27	23
420	$0 \cdot 3118$	$0 \cdot 3118$	43	43
217	~ 0.3158	$0 \cdot 3142$	19	20
325		0.3231	0	2
404	0.3261	$0 \cdot 3265$	45	45
316	$0 \cdot 3298$	$0 \cdot 3294$	50	60
422	~ 0.3318	$0 \cdot 3310$	19	20
118	0.3389	$0 \cdot 3397$	18	14
334	-	$0 \cdot 3577$	0	2
208	$0 \cdot 3702$	$0 \cdot 3709$	28	28
415	~ 0.384	$0 \cdot 3855$	18	12
424	$0 \cdot 3894$	$0 \cdot 3889$	35	37
510	$0 \cdot 4056$	$0 \cdot 4053$	18	13
406)	0.4246	$0 \cdot 4230$	18	16)
512 \}	0.4246	$0 \cdot 4246$	37	39)
228	$0 \cdot 4337$	$0 \cdot 4333$	27	27
327	-	$0 \cdot 4389$	0	2
336)	$0 \cdot 4541$	$0 \cdot 4539$	20	17)
521 f	$0 \cdot 4541$	$0 \cdot 4568$	20	12)
318)	~ 0.465	$0 \cdot 4644$	12	9)
219 \}	~ 0.465	0.4684	12	5)
0,0,10	$0 \cdot 4829$	0.4821	17	10
514 \}	$0 \cdot 4829$	0.4825	17	10)
426	~ 0.486	0.4853	13	9
523	$0 \cdot 4954$	$0 \cdot 4954$	~ 18	11
440)	$0 \cdot 4987$	$0 \cdot 4987$	23	19)
417)	-	$0 \cdot 5012$	-	9)
1,10	0.5133	0.5131	25	25
442	~ 0.5189	0.5181	~ 12	9
530	~ 0.5310	0.5300	~ 0	5
,0,10	-	0.5444	0	4
532	0.5494	$0 \cdot 5492$	22	28
408	0.5585	0.5579	18	17

that x and y be approximately $\pm \frac{1}{6}$ relative to each bromine at $0,0,0$ and $0,0, \frac{1}{2}$, and $\frac{1}{2} \pm \frac{1}{6}$ relative to the bromines at $\frac{1}{2}, \frac{1}{2}, 0$ and $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$. The coordinates so chosen lead to reasonably good agreement between calculated and observed intensities for the $h 00$ and
$h k 0$ reflections. However, x and y were varied independently about the value $\frac{1}{6}$ in order to determine if x and y were equivalent. Final trial calculations on all $h 00$ and $h k 0$ reflections indicated that, within the experimental error, x and y were the same, with $x=y=0.161 \pm 0 \cdot 003$. From similar considerations, it was determined that the z coordinates were given by $z= \pm 0 \cdot 147 \pm 0 \cdot 003$, or $\frac{1}{2} \pm 0 \cdot 147$.

Ambiguities arise in assigning z values to particular fluorine atoms. However, it is evident that z values may be chosen which will lead to planar or tetrahedral configurations of the fluorines about each bromine. Only one structure leads to reasonable F-F distances between neighboring configurations. This is shown in Fig. 1, where the potassium atom is now taken as

$\mathrm{Fat} \pm z$
$\mathrm{Fat} \pm\left(\frac{1}{2}+z\right)$

Fig. 1. Projection on c face of KBrF_{4}.
the origin. The atomic positions and the symmetry are given by $D_{4 h}^{18}-I 4 / \mathrm{mcm}$, with

$$
\begin{aligned}
& 4 \mathrm{~K} \text { in } 0,0,0 ; 0,0, \frac{1}{2} ; \frac{1}{2}, \frac{1}{2}, 0 ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2} . \\
& 4 \mathrm{Br} \text { in } 0, \frac{1}{2}, \frac{1}{4} ; 0, \frac{1}{2}, \frac{3}{4} ; \frac{1}{2}, 0, \frac{1}{4} ; \frac{1}{2}, 0, \frac{3}{4} . \\
& 16 \mathrm{~F} \text { in }\left(0,0,0 ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)+ \\
& \quad x, \frac{1}{2}+x, z ; \bar{x}, \frac{1}{2}-x, z ; \frac{1}{2}+x, \bar{x}, z ; \frac{1}{2}-x, x, z ; \\
& \quad x, \frac{1}{2}+x, \bar{z} ; \bar{x}, \frac{1}{2}-x, \bar{z} ; \frac{1}{2}+x, \bar{x}, \bar{z} ; \frac{1}{2}-x, x, \bar{z} \text {; }
\end{aligned}
$$

with $x=0.161 \pm 0.003$, and $z=0.147 \pm 0.003$.
The extent of agreement between observed and calculated intensities is shown in Table 1. The data of this table were taken with Cu radiation filtered with nickel foil. The observed intensities were deduced from microphotometer tracings and the calculated intensities have been corrected by the temperature factor $\exp \left(-2 B \sin ^{2} \theta\left(\lambda^{2}\right)\right.$, with $B=2 \times 10^{-16} \mathrm{~cm} .^{2}$. Brackets surround poorly or improperly resolved lines, while the asterisk indicates interference by an impurity line.

The structure

The bromine atoms (Fig. 1) are surrounded by tetrahedral configurations of fluorine atoms with the twofold axis of the tetrahedron parallel to the c axis. In the $x-y$ plane, the $\mathbf{F}-\mathbf{F}$ distance within any BrF_{4}^{-} tetrahedron is $2 \cdot 81 \pm 0.04 \AA$. In any other direction,
the F-F distance is $3 \cdot 03 \pm 0.04 \AA$. The tetrahedra are therefore elongated in the direction of the c axis. The $\mathrm{Br}-\mathrm{F}$ distance is $1.81 \pm 0.04 \AA$, close to the value cited for BrF_{3}. (The sum of the tetrahedral radii is $1.75 \AA$.) All potassium atoms are bonded to 8 equidistant fluorines with $\mathrm{K}-8 \mathrm{~F}=2 \cdot 84 \pm 0.03 \AA$. The coordination of the fluorines involves 4 fluorines at the corners of a square in a plane below the potassium and 4 fluorines similarily disposed in a plane above.

The structure is similar to $\mathrm{BeSO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Beevers \& Lipson, 1932). The BrF_{4}^{-}ions are replaced by tetrahedral SO_{4}^{2-} ions while the K^{+}ions are replaced by tetrahedral $\left(\mathrm{Be} 4 \mathrm{H}_{2} \mathrm{O}\right)^{2+}$ groups. The space group is $D_{2 d}^{10}$ and no symmetry planes exist. Thus, the sulphurs do not lie on symmetry planes, as do the potassiums, and the sulphate ions can therefore be rotated from the position occupied by BrF_{4}^{-}. The rotation which is observed is slight. Otherwise the distribution of SO_{4}^{2-}
ions about the $\left(\mathrm{Be}_{4} \mathrm{H}_{2} \mathrm{O}\right)^{2+}$ ions is similar to that observed for the BrF_{4}^{-}groups around K^{+}.

I am indebted to several members of the staff for the samples used in this study. Chemical preparations of the KBrF_{4} samples and the filling of the capillaries were carried out by Dr I. Sheft and Dr A. Martin of the Chemistry Division. The density measurements, as well as the preparation of the narrow quartz capillary and the sample, were made by Mr G. Schnizlein of the Chemical Engineering Division.

References

Beevers, C. A. \& Lipson, H. (1932). Z. Kristallogr. 82, 297.

Rogers, M. T., Wahrhaftig, A. L. \& Schomarer, V. (1947). Abstracts, Atlantic City Meeting, American Chemical Society, April.

The Crystal Structure of Barium Dititanate, $\mathbf{B a O} .2 \mathbf{T i O}_{\mathbf{2}}{ }^{*}$

By F. W. Harrison \dagger
College of Mineral Industries, The Pennsylvania State University, University Park, Pa., U.S.A.

(Received 7 December 1955)
The crystal structure of $\mathrm{BaO} .2 \mathrm{TiO}_{2}$ has been determined by means of two-dimensional Patterson and Fourier syntheses. The unit cell is monoclinic with $a=9 \cdot 410 \pm 0 \cdot 004, b=3 \cdot 930 \pm 0 \cdot 001$, $c=16.892 \pm 0.013 \AA, \beta=103^{\circ} 2^{\prime} \pm 3^{\prime}$, space group $A 2 / m$, and contains six formula units. The structural arrangement is discussed in relation to other baria-titania compounds.

Introduction

In the course oir investigations of the phase diagram of the system $\mathrm{BaO}-\mathrm{TiO}_{2}$, Rase \& Roy (1955) have observed the formation, in addition to the polymorphic forms of BaTiO_{3}, of the compounds $2 \mathrm{BaO}^{2} \mathrm{TiO}_{2}$, $\mathrm{BaO} .3 \mathrm{TiO}_{2}, \mathrm{BaO} .4 \mathrm{TiO}_{2}$, and $\mathrm{BaO} .2 \mathrm{TiO}_{2}$ (or 3 BaO . $7 \mathrm{TiO}_{2}$).

The present paper is concerned with the structure of the last compound.

The compound is formed in mixtures of TiO_{2} and BaCO_{3} containing between 50 and 75 molar\% of TiO_{2} which have undergone prolonged heating at temperatures above $1210^{\circ} \mathrm{C}$. Acicular crystals some 10 mm . long and 0.5 mm . in width grow readily on cooling a melt containing $62 \frac{2}{3}$ molar $\% \mathrm{TiO}_{2}$.

[^1]
Experimental

Crystals grown by Rase \& Roy were examined by oscillation, rotation and Weissenberg photographs, using $\mathrm{Cu} K \alpha$ radiation. They were found to be monoclinic with the b axis parallel to the needle length.

Accurate measurements of the cell dimensions were obtained by the method of Weisz, Cochran \& Cole (1948). The values a, c, and β were found from X-ray photographs in which the b axis was rotation axis, and the value of b from photographs in which the a axis was rotation axis. The space group was derived from systematic absences observed on the zero, first, second and third b-axis Weissenberg photographs.
$0 k l$ and $h 0 l$ intensities, recorded on zero-layer a and b-axis Weissenberg photographs respectively, using $\mathrm{Cu} K \alpha$ radiation, were measured by visual estimation. No correction for absorption was made in the latter case since the needle-shaped crystal was mounted with its length along the rotation axis and its cross-section was small. However, owing to the

[^0]: * Work performed under the auspices of the U.S. Atomic Energy Commission.

[^1]: * Contribution No. 54-2 from the College of Mineral Industries, The Pennsylvania State University.
 \dagger Now at Mullard Research Laboratories, Cross Oak Lane, Salfords, near Redhill, Surrey, England.

